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Turbulent boundary-layer fluctuations in the incompressive domain are expressed in 
terms of fluctuating velocity-product ‘ sources ’ in order to elucidate relative 
characteristics of fluctuating wall-shear stress and pressure in the subconvective 
range of streamwise wavenumbers. Appropriate viscous wall conditions are applied, 
and results are obtained to lowest order in this Strouhal-scaled wavenumber which 
serves as the expansion parameter. The spectral amplitudes of pressure and of the 
shear stress component directed along the wavevector both contain additive terms 
proportional to source integrals with exponential wall-distance weighting charac- 
teristic respectively of the irrotational and the rotational fields. At low wavenumbers, 
barring unexpected relative smallness of the pertinent boundary-layer source term, 
the rotational terms become dominant. There the wall pressure and shear-stress 
component have spectra that approach the same non-vanishing, wavevector-white 
but generally viscous-scale-dependent level and are totally coherent with phase 
difference in. The other, irrotational contributions to the shear-stress and pressure 
amplitudes likewise bear a simple and previously known, generally wavevector- and 
frequency-dependent, ratio to one another. In an inviscid limit this contribution to 
the pressure amplitude reduces to the one obtained previously from inviscid 
treatments. A representative class of models is introduced for the source spectrum, 
and the resulting rotational contribution to the spectral density of wall pressure and 
K-aligned shear stress at low (but incompressive) wavenumbers is estimated. It is 
suggested that this contribution may predominate and account for measured low- 
wavenumber levels of wall pressure. 

1. Introduction 
The description of pressure fluctuations on a wall bounded by a turbulent 

boundary layer has long been a matter of concern in numerous applications. In terms 
of a spectral density in planar wavevector and frequency, the preponderance of 
spectral energy of this pressure resides in a ‘mean-convective ridge’ where the ratio 
of radian frequency to streamwise wavenumber is of the order of a mean convection 
speed. Since, however, the spectral transfer function from wall pressure to pertinent 
response quantities in typical applications provides strong suppression at  such 
relatively high wavenumbers, the level and dependence of wall pressure in the low- 
wavenumber tail commands particular attention - magnified, moreover, by the 
related fact that this domain is least amenable to flexible experimental and 
theoretical investigation. 

For the most part, at least until lately, little attention has been given to the 
spectral density of wall-shear stress. In certain applications, nevertheless, this 
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constitutes a potentially important source similar to  wall pressure. For example, 
where the flow is bounded by a layer of elastomer, fluid-loaded on the outer face, as 
typically i t  is, and bonded to a structure on its inner, wall-shear stress is capable of 
generating not merely shear stress but also normal stress within the layer. The 
transfer function to this interior normal stress from wall-shear stress, while 
depending differently on wavenumber and normal distance, is broadly comparable 
with that from wall pressure. Likewise, there is evidence from applications in 
cylindrical geometry that low-wavenumber wall-shear stress excites longitudinal 
waves in the cylindrical wall that drive associated Poisson-coupled pressure waves in 
an interior fluid, having appreciable consequences for the interior noise field. 

A specific feature of fluctuating wall pressure might even suggest that, where low 
wavenumbers are concerned, it could tend to become weaker than wall-shear stress. 
According to  the Kraichnan-Phillips ‘theorem ’ (Kraichnan 1956; Phillips 1956), as 
wavenumber decreases below both the Strouhal wavenumber w / U ,  (the radian 
frequency divided by the free-stream speed) and the reciprocal outer scale - 8-’ but 
remains above the sound wavenumber w / c ,  c being the sound speed, the spectrum of 
turbulent wall pressure tends toward zero, probably as K 2  (Chase 1987). There 
appeared no similar reason, though this point has not been free of controversy, to  
anticipate that turbulent wall-shear stress a t  low wavenumbers tends toward zero a t  
all. Such questions are the focus of the present work. Appropriate viscous boundary 
conditions are applied to the flow in the incompressive domain, paralleling the 
analysis of pressure by Hariri &, Akylas (1985). 

According to the principal result obtained, barring vanishing of a certain velocity- 
product spectrum with vanishing wavenumber, for which no evidence is identified, 
the spectra of both the wall-shear stress component directed along the wavevector 
and the wall pressure approach the same non-vanishing, wavevector-white but 
perhaps viscous-scale-dependent level. On the basis of a model source spectrum, it is 
suggested that the measured level of low-wavenumber wall pressure may thereby be 
accountable, as well as the absence of evidence that this behaves in accordance with 
the Kraichnan-Phillips theorem. 

2. Boundary-layer fluctuations in terms of nonlinear sources in the 
incompressive case 

2.1. Dynamical equations and formal solution 

The flow, regarded here as incompressible, is approximated as streamwise 
statistically homogeneous with given mean velocity profile (U(y), 0,O). For the 
fluctuating velocity field, the dynamic equations are formulated in terms of 
FourierStieltjes (F-S) amplitudes (GI, v”, G3), where these are wave-oriented com- 
ponents with 6, along the wavevector K (the x3 direction) in the plane of the wall and 
v” normal to  the wall. These amplitudes are transforms of the corresponding 
space-time realization, as given by 

G , ( y , K , w )  = ( 2 7 ~ ) ~ ~  dt d2Rexp[ - i (K-R-wt ) ]u , ( y ,R , t ) ,  s s  
where the u, are components of fluctuating velocity, R is the vector (x, z )  in the wall 
plane and integrals run over the doubly infinite intervals. 

The basic equations are taken as the two independent equations for the x1 and y 
components of fluctuating vorticity and the continuity equation 
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Here v is the kinematic viscosity, and &, and k, are respectively the streamwise and 
spanwise components of K.  8, and S, are the F-S transforms of the x1 and y 
components of the vector 

s = (V x u )  .Vu-u.V(V x u )  = v x [u x (V x u)]  = v x [&Vu2-V.uu+ (V.u)  u] 

= -v x (V-uu), (4) 
where u denotes the fluctuating velocity and the last form results from the continuity 
equation V - u  = 0 (equation (3)). Boundary conditions required to be satisfied are 

v”(0) = v”’(0) = Zi,(O) = 0, I.;(co)l < co, lz;,(co)l < co, 
where the arguments are understood as y. 

Equation (1) is the inhomogeneous generalization of the familiar Orr-Sommerfeld 
equation to  include the nonlinear terms of the underlying NavierStokes equations, 
regarded as given sources. Equation (2) is the corresponding equation for the velocity 
amplitude Zi, along the wavefront. 

In  terms of the fluctuating velocity components (u,, u,, u3), whose F-S transforms 
( Z i l , G , Z i 3 )  appear in (1)  to (3), 8, and 8, in (1) and (2), by use of (4), may be written 

8, = -x[($)T,,+iKq,], 

where T, (y ,  K,  w )  = (u,ui),, and a subscript A signifies a F-S transform ( A omitted 
from Tii). (Note that (u, u j )  ,, for w + 0 may be regarded as the transform equivalently 
of uiui or of uiuj-E(uiui).) 

By use of the NavierStokes equations and the continuity equation, the fluctuating 
pressure amplitude ( omitted) may be expressed as 

p = pK-2[~(v””’-K2w’)+i(w-Ukz)B’+ik, U’v”-K2T,,+iKTj,] (6) 

p(0 )  = pvK-v““(o). (7) 

where p is the fluid density and a prime denotes dldy. In  particular, a t  the (rigid) wall 
(Y = 0) 

Similarly, the F-S amplitude of the x3 component of wall-shear stress, i.e. of the 
component along K,  by use of the continuity equation (3), becomes 

73 = pvGj(0) = ipvK-’P(O), 

and the amplitude of the x1 component is 

7, = pvG;(O). 

Define the dimensionless parameters 

E G U,  k x / w ,  y l  = i - vK2/w, y i  = - v K 2 / w ,  (10) 
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and introduce also the scaled variables 

5 = (w /v )%,  V ( 5 )  = m+J)%)/u,, ( 1 1 )  
the former being wall distance scaled on the characteristic penetration dept,h for 
rotational flow and the latter the normalized mean velocity. 

Equations ( 1 )  and (2) may be rewritten without approximation as 

where 

2.2.  Solution to lowest order in streamwise Strouhal-scaled wavenumber 

A perturbation expansion is now introduced with respect to the ‘ subconvective ’ 
parameter E defined in (10) by inserting into (12) and (13) assumed expansions : 

1 l: = V O + € V l +  ... , 
ti, = Ul0+EUll+ ... . 

Equating parts of equal order in thosc equations with the inhomogeneous parts Zl 
and Z+ regarded as fully accounted for in vo and ul0 yields 

Let gi(g) ( j  = 1,  ..., 4) denote a set of four independent arbitrarily normalized 
solutions to the homogeneous form of (16a) obtained by replacing C, by zero. A 
general solution of (16a) may then be formed according to the method of variation 
of parameters (Bender & Orszag 1978) as 

5 
v^o(Y) = c 9j(C) 1 dsZ,(s) W A S )  + c b,9,(5), (18) 

i 0 i 

where the sums run from 1 to 4, the argument of vo is now regarded as g in place of 
y, and the coefficients bj are to be established from the boundary conditions. Here 
wj(s )  = y . ( s ) /W(s) ,  where W(s)  is the determinant of the Wronskian matrix {gjn)(s)} 
(n = 0 , 1 , 2 , 3 )  and y.(s) is the cofactor of g(i”(s). Similarly, let fi(C) ( j  = 1,2)  denote a 
set of two independent solutions to the homogeneous form of ( 1 6 b ) .  Then a general 
solution of (166) may be formed as 



Fluctuations in turbulent boundary- layer flow 549 

wherej = 1 and 2 and r,(s) = R,(s)/R(s), R being the determinant and R, the cofactor 
of f;(s) of the Wronskian matrix {f/")(s)} (n = 0 , l ) .  

Let the phases of y1 and y2 be chosen such that 

One may take as four independent solutions g,(C) of the homogeneous form of (16a) 
ga* = exp ( f iy, C) (a = 1,2).  One then obtains for the w,, say w,*, 

(21 1 w,*(&') = fi~;'(y;-y;)-'exP (ki?JlC), 
and w2+ is obtained by exchanging indices 1 and 2 in this expression. 

By tLe prescription above, the solution to (16a) may be written 

-ta,+e'Y,5+al_e-'Yi5+a 2+ eiYzC+a 2- e-iYzC, (22) 

where the a,* are constants to be determined. The condition wo(0) = 0 implies that 

a,++a,-+a,++a,- = 0, (23a) 

?l(%+-al-) +Y&,+-a,-) = 0. (23b) 

and the condition wL(0) = 0 that 

Further, to ensure that vo(C) remains bounded as C+m, in view of (20), the 
coefficients of e-'YiC and e-iYaC in this limit must vanish, whence 

(234 
~ ~ - + i ~ ; ~ ( y ; - y ; ) - ~ i v ,  = 0, \ 

( Y l / Y 2 )  (a,+ - a,-)- &I+ + a1-) - iy;l(y; - y T 1 N 2  = 071 

where 

Equations (23) suffice to determine the a,+ in terms of the N,. 
By repeated differentiation of (22) and evaluation a t  6 = 0, it  is found that 

p~K-~wr(O)  = ipwK-'(y, -y2)-l  (A', -y,N,/y,), 
ipvK-lv:(O) = pwK-'(y, -y2)-l  (Nl - N 2 ) ,  

(25a) 

(25b) 

where the primes, as in (7) and (8), now represent differentiation not with respect to 
& ' b u t  to y (of (11) ) .  

Since the !& are convolutions of fluctuating velocity amplitudes Zi,, 6, (see below), 
the requircd vanishing of the spectral densities of these velocity components at the 
rigid wall apparently implies that the amplitudes T,,(0), T&(O) may, as usual, be 
regarded as vanishing there. To provide for possible relaxation of this condition, 
however, the analysis will be formally generalized to the case where no such 
assumption is made. 

To this end, in view of (6), equation (7) is generalized to become 

p ( 0 )  = p[vK-2v"'(O) - TS3(O) +X-lT&(o)]. (26) 
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Likewise, the wall-shear-stress amplitude must be generalized to  include a 
hypothetical residual Reynolds-stress contribution a t  the wall, so that (8) and (9) are 
generalized to become 

T~ = p[iuK-'w"(O) - T3,(0)], (27) 

71 = P L V ~ ; ( O )  - T12(0)1. (28) 

T,j(yjK,W) = tij([,K,U), (29) 
Proceeding, then, set 

and let derivatives of T,, t, with respect to y, 5, respectively, be denoted by a prime. 
(To render t, and t i j  non-dimensional, it is noted, one would need to  include in the 
right member of (29) a squared-velocity factor, e.g. Urn.) By (5a) and (14a) 

C, = - i V W - 2 K [ ( W / v ) t ~ ~ + i K ( W / V ) f ( t j . 3 - t ; 2 ) + K 2 t 2 3 ] .  (30) 

Insertion of (30) in (24) and integration by parts yields 

+tk(0)  -iy= t 3 2 ( 0 )  + y ~ [ ~ 3 3 ( ~ )  - t 2 2 ( 0 ) 1 } .  (31) 

To lowest order in 6, the amplitudes pO(0) and 4 of wall pressure and K-aligned shear 
stress are obtained from (26) and (27) by substitution from (25) and (31), recalling 
(29) : 

P0(0) = p[a,+ c2 - T22(0)1, 

4 = - iP(crl+ c 2  Y J Y l ) ,  

(32) 

(33) 

(Ti = -(yi-yz)-' dce'ylc[(yt +Y~)t3,+iyiy,(t,3-ttzz)l, (34) 

(35a) 

(35b) 

Joa where 

c2 = iy, y2(y1 - y2)-' d[eiYzS(t3, - t , ,  - i2t3,) i: 
m 

= - yl(yl -y2)-'K Jo d ~ e - ~ ~ ( T , ,  - T,, -i2T32), 

and the arguments of the t,, T,, are suppressed. Of the 'wall terms' in (32) and (33), 
only T,,(O) in (32) has failed to cancel, and it will hereafter be regarded as vanishing. 

Alternative to the present formulation of the equations of motion based on 
elimination of the pressure amplitude and use of the vorticity equations (1) and (2), 
one may proceed instead from the coupled equations for the F-S amplitudes S(y), 
p(y) of normal velocity and pressure, as done by Hariri & Akylas (1985) with slight 
compressibility included. In  the incompressive case these become 

in which, in terms of the earlier qj, 
(V - T) = Ti2 + i2KTj, -K2T,,, 

= i K T 3 , + c 2 .  
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It has been verified that this formulation yields, as it should, the same results as 
presented above. 

This latter formulation, with the equations for the x and z components 6, Zi, of the 
fluctuating velocity amplitude adjoined to  those above, likewise affords the simplest 
way to derive a result also for the component 7; of wall-shear-stress amplitude 
normal to the wavevector K. Paralleling (33) to  (35) for T:, one finds 

7: = p lo d6eiYlc(iy, t,, - y2  t 3 , ) .  

In this instance there is no contribution of the kind ('irrotational ') represented by 
the second term of (33) for 7:. Together, the results for 7:, 7: complete the 
determination of the wall-stress vector, T O .  

I n  the application where fluctuating wall-shear stress excites an elastomer layer 
(fluid-loaded), i t  is noted, only the component T~ along Kis capable of producing non- 
vanishing normal components of stress within the elastomer. 

00 

3. Further analysis and interpretation 
It is noted first that  CT,, uz represent, respectively, rotational and irrotational 

contributions, since by (20) the exponential factors entering (34) and (35) may be 
written 

1 (36) 
exp (iY, 6) = exp ( -KY 1 7  

exp(iy,c) = exp[-2f(i-i) ( w / v + i ~ ~ ) f y l . J  

The following discussion of the magnitudes of distinct terms and contributions in 
(34) and (35) is to be interpreted in terms of the magnitudes of the corresponding 
spectra that are formed in the usual way from the I F 4  amplitudes. Where pertinent, 
it is supposed that the ti, in the relevant domains are comparable with one another 
and that no significant cancellations occur due to  coherence between terms, as 
reflected in their cross-spectra. 

Consider first the part cr,. In the inviscid limit where vK2/w = -7; + 0, (35b) yields 
in (32) 

p: + -pKlom dy e-KYT,, T, = q3 - i2q2  - z2. (37) 

This, in fact, is the usual inviscid result in the prescribed limit, given, for example, 
by Chase & Noiseux (1982), (23) with E = 0. When K is regarded as of the same order 
as k ,  (k,/K = O(EO)), contrary to the assumption underlying the present treatment 
(as well as that of Hariri & Akylas 1985), the present perturbation expansion 
becomes disordered. A proper treatment in this case, as given originally by Bergeron 
(1973) and rederived by Chase & Noiseux (1982, equation 24), results to lowest order 
in e in the appearance of an additional term in T, in (30) corresponding to 
multiplication of T32 in (37) for T, by 1 - k, U'/Kw. 

More generally than (37), for arbitrary vK2/w, the contributions due to  u2 in (32) 
and (33) may be written as 
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The relation between the irrotational contributions to  wall-shear stress and pressure 
given by (39) agrees with one given by a treatment by Howe (1989, equation 2.9). 

I n  the low-wavenumber limit K --f 0 (but subject here to the condition K 9 w / c  for 
incompressibility), one has y, + 0. Furthermore, validity of the conditions that 
underlie the Kraichnan-Phillips theorem imply that in thc integral in (37) T , + O  
uniformly in K as y + co, so that p i  as given by (37) vanishes as K + 0. (For a related 
discussion, see Chase 1987.) Hence, the only term remaining in (34) and (35) that 
need not vanish is that  from the term a ytt,, in the integrand of (34). Thus, in this 
limit (32) and (33) yield the results 

po(0)  --f i7: ( K  + 0), (41) 

where arguments K,  w and 5 (or y) are still suppressed in t,, (or T,,). 
According to  (40) and (41), at the low wavenumbers under discussion here, 

assuming that t,, does not vanish with K ,  both the wall-shear stress (K-oriented 
component) and wall pressure approach non-vanishing, wavevector-white levels, and 
these levels, moreover, are equal, the two amplitudes being perfectly coherent and 
differing by in phase. Since the flow has been treated as incompressible and the 
conditions for applicability of the Kraichnan-Phillips theorem have not been 
violated, the possible non-vanishing of the wall-pressure spectrum as K + 0 clearly 
results from the proper inclusion of the viscous wall condition (cf. also Hariri & 
Akylas 1985 for pressure in the case of slight compressibility). 

In the limit where k,/K = O(eo) ,  the result (40) for the wall-shear stress component 
7, to lowest order implies also the form for the component in an arbitrary direction 
in the plane. Specifically, when K + 0 there can be no dependence on K,  and the stress 
vector must be given by the covariant generalization 

?! + it 
P 

dc  exp (i") t , ,  f42) 

where t ,  denotes the vector with (1,3) components (t,,, t , , ) .  In  this limit the result has 
been verified by explicit calculation (omitted here) of the component 71 of (9). 

For orientation and a guide to possible future modelling consistent with the 
preceding formal development, the relation is recalled that expresses the velocity- 
product amplitudes I:, as a convolution of amplitudes Qj of velocity components : 

Tj(y, K , w )  = dK' dw'Q,(y, K-K',w-w')&j(y,K',~'). i43) S I  
In particular, G2 may be expressed as 

x [Q,, (y, K', w ' )  cos #'- &,, (y, K', 0') sin $7, (44) 
where Q, refers to the velocity component along K', Q, to the orthogonal component 
in the plane, and 4' is the polar angle of K' measured from K. A t  low wavenumbers 
K (  @ w/U,), xi may derive its dominant contribution from a domain of K', w' where 
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one or the other of the two factors in the integrand has its mcan-convective ridge (e.g. 
k: - w'/U,) .  There appears no grounds for expecting that the result of this 
convolution for T,, should vanish as K + 0. 

The present paper, i t  is emphasized, like those of Bergeron (1973) and Hariri & 
Akylas (1985), is based on an expansion, first, for small U,/c .  In treating the flow as 
incompressible, however, the validity of the results is further restricted to small 
w1cK.t  

4. Assessment based on an orienting model 
The issue of estimating the relative contributions u1 and u, in (32) and (33), i.e. of 

p! and r:l relative to p:, is tantamount, when K2u/w  4 1,  to comparing the 
magnitude of (41) with that of (37). Even if T, and q3 are comparable, as we believe 
likely, the result depends on their dependence (i.e. that of their spectra) on wall 
distance, y. 

For example, consider the following simple, suggestive, and conceivably 
representative model. Suppose the spectrum, say S3,(y, y', K,  w ) ,  corresponding to t,, 
is coherent between points a t  different wall distance and hence given by a product 
form 

(45) 

where v* is the wall friction speed. Further suppose that the dimensionless function 
q5 is given for K < w / U ,  (with factor d adjoined) by 

&(Y, Y', K, w )  = .: W Y ,  K ,  w )  &Y', K, w ) ,  

$$(y, 0, w )  = 

(46) 

whcre B, b,, b ,  c,, cl, p, y ,  01, /3, s are constants and $ 2  y 2 0, s 2 0, /3 2 0, B - 1 ,  
b, - I ,  b - 1, c, - I ,  el - 1,  p - 1. 

The factor [ ]-(+a) in (46) incorporates the possible role of a correlation scale for the 
fluctuations with reciprocal - y-l+ (since the effective wavenumber is - w/v,), 
so that the scale varies as y for y 4 6 and becomes - 6 for y 2 6. If y + 0, the factor 
(1 + c1 w6/w,)-Y in (46) implies a role also for a scale - 6 independently of y, as further 
discussed below. 

The final factor in (46) is introduced on account of the possible implication of the 
vanishing of fluctuating-velocity amplitudes as y becomes small relative to ( u / w ) t .  
The Fourier-Stieltjes amplitude underlying the source density S,,, it is recalled, 
represents a convolution of these amplitudes as in (43). On account of the (three-fold) 
integration involved in this convolution, however, it appears possible that the 
convolution may vanish more weakly as y(w/u)i  +. 0 than does the associated velocity 
product in (43). Furthermore, part of this effect driving the spectrum to zero as 
y+O may be supplied already by the factor y3-,Y that occurs in S,, by (45) and (46) 
in the absence of the final factor. 

I n  the near-wall region where y 4 6, for y 9 ( u / w ) i  (i.e. with omission of the inner- 
scale dependent final factor in (46)); one has 

(47 a )  &(y, 0, w )  +By:(y/G)-y (1 +c, wS/v,)-Y( 1 +c, wy/v*)-'t-a). 
t A subsequent treatment, to be reported separately, has been carried out without restriction 

on o / c K  (but still for small U, /c ) .  I n  a certain approximation that everywhere neglects W V / C ' ,  the 
contribution to shear-stress amplitude represented by (40) remains unchan ed while the 
contribution to pressure amplitude of (41) contains an added factor (1 - w z / c z K 2 ) - ~ .  F 
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I n  further sublimits this form becomes 

( B y j ( y / S ) - Y  for w6/v,  4 1, (47 b )  

According to (47c)  and (45), in this near-wall region S,, becomes independent of 6, 
i.e. exhibits ‘wall similarity’, in the domain where, in addition, the effective 
wavenumber w/v* of the fluctuations is large compared with the reciprocal outer 
scale 6’. On the other hand, total wall similarity in the near-wall region, meaning 
scale-independence for all wS/v,  is exhibited by the present model form, in view of 
(47b),  only if y = 0. 

With this characterization of the source model in the background, the resulting 
rotational contribution, say P,(O, w), to the wavcvector-frequency spectral density of 
wall pressure of K-aligned shear stress may be obtained from the approximations (40) 
and (41).  These yield 

For the coherent model (45), this becomes simply 

P,(o, w )  = p2v; ~ 3 1 1 ~ 1 2 ,  

By estimating the integral (49b) in limiting domains one can arrive a t  a rough result 
for P, of (49a). Consider, in particular, the (inviscid) subdomain where WV/V: 6 1 and 
wS/v, 2 1.  With these restrictions, (49) yields 

P,(O, 0) - p%6* W-yoV/v:):-y. (50) 

If y = $, estimate (50) reduces simply to the scale-independent, wavevector-white 
form - p2v:o-3 that is most commonly accepted as describing turbulent wall 
pressure in the range of subconvective (but incompressive) wavenumbers under 
discussion here. Moreover, it appears, the level coefficient associated with this 
rotational contribution may suffice to account for the roughly measured level 
(although Hariri & Akylas (1985), on the basis, apparently, of a less specific 
appraisal, seem to have concluded otherwise). This measured level, when normalized 
such that mean squared pressure is obtained by integration over the doubly infinite 
range of radian frequency, lies on the order of 10 or 20 dB below that of p2vt w - ~ .  

corresponds according to (45) and (47b) to a source spectrum 
S 3 , ( y ,  y, 0, w )  possessing incomplete wall similarity in the sense noted above, varying 
as v; 6, in the near-wall (but inviscid) region in the low-frequency limit, rather than 
as v: y3. Whether such a source model is sustainable in the light of known and 
presumptive properties of the boundary-layer fluctuations warrants careful con- 
sideration. It should be further noted that, even if the choice y = 0 in (46) were 
required of a tenable model, as wv/v i  increases the estimated functional form of 
P,(O, w )  decreases relative to  the result (50) obtained for sufficiently small wv/v2,, so 
that near scale-independence may prevail over the range of a flat peak possibly 
encompassing the usual domain of measurement. 

A value y = 



Fluctuations in turbulent boundary-layer $ow 555 

If the rotational contribution, in fact, dominates wall pressure (as well as shear 
stress) in the low-wavenumber domain discussed here, the Kraichnan-Phillips 
theorem, which is based on an inviscid approximation, is rendered moot, and the 
present lack of experimental substantiation of it (Chase 1990) may be understood. 
Likewise, source-based modelling of the irrotational contribution, say Pi(K, w ) ,  is 
freed from the constraint of accounting for the measured properties of the low- 
wavenumber domain (cf. Chase 1987). This contribution (obtained from (37) with the 
modification cited), then, might well have roughly the dependence (omitting 
directionality ) 

P,(K, w )  - p2v: W - ~ ( W *  K / w ) ~ ,  

once suggested as most likely (Chase 1980). 

shear stress along with pressure in various applications. 
The present results also support the necessity for considering fluctuating wall- 
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